Interactive Visual Analysis for Vehicle Detector Data
نویسندگان
چکیده
Visualization of vehicle detection (VD) data is essential because the data play an important role in traffic control and policy development. Most previous works focus on visualizing trajectories obtained from global positioning system (GPS), which are detailed but less representative. In contrast, VD data report the traffic statistic at each sensing site during a time span, including speed, flow, and occupancy of each lane, which contain comprehensive traffic information for analysis. In this work, we visualize three-year VD data of freeways in Taiwan. The visualization depicts the traffic situation at a site over time using a color-coded chart that extends from left to right over time. The charts are vertically stacked and horizontally aligned according to VD’s located mileage and data time, respectively, to provide global insight. Our system allows semantic zoom, which changes the chart appearance in a continuous manner, to enable macroand microscopic visualizations. Analysts can explore events that span an area with different sizes and that persist a time span with various lengths. To ensure the feasibility of our visualization, before the system design, we conducted a study with experts who work in the national freeway bureau and the institute of transportation of Taiwan. We also showed our results to the experts after the prototype system was built. The feedback shows that our VD data visualization is helpful to traffic control and policy development.
منابع مشابه
Close Following Behavior: Estimation of Desired Gap Headway Using Loop Detector Data (TECHNICAL NOTE)
The desired gap headway of drivers, while close following, represents the main parameter in determining the following distance between vehicles. This paper uses the raw individual vehicles data taken from loop detectors for millions of vehicles used M25 and M42 in order to estimate the gap headway distributions between successive pairs of vehicles. The data used in this paper were filtered so...
متن کاملA Vehicle Detection Approach using Deep Learning Methodologies
The purpose of this study is to successfully train our vehicle detector using R-CNN, Faster R-CNN deep learning methods on a sample vehicle data sets and to optimize the success rate of the trained detector by providing efficient results for vehicle detection by testing the trained vehicle detector on the test data. The working method consists of six main stages. These are respectively; loading...
متن کاملA Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System
In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system...
متن کاملTrajectory Visualising and Convolution Control and Application for Vortex Detection
We present a new analysis technique for pathlines in 3D simulation data by visualizing the distribution of the scalars along pathlines in a separate 2D view. The presented visualization is applicable for vortex detection and for understanding the development of scalar properties of particles during their traversal through the simulation domain. Furthermore the presented 2D view can be coupled w...
متن کاملA Critical Visual Analysis of Gender Representation of ELT Materials from a Multimodal Perspective
This content analysis study, employing a multimodal perspective and critical visual analysis, set out to analyze gender representations in Top Notch series, one of the highly used ELT textbooks in Iran. For this purpose, six images were selected from these series and analyzed in terms of ‘representational’, ‘interactive’ and ‘compositional’ modes of meanings. The result indicated that there are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 34 شماره
صفحات -
تاریخ انتشار 2015